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A B S T R A C T
The continuous rise of renewable energy in the global energy mix highlights the need to analyze
and enhance traditional energy plants’ flexibility to support integration. Hydropower, with its rapid
response capabilities and significant energy storage, plays a vital role in this context. However,
simplifications are required due to the complex interconnections among cascaded hydropower plants
and the inherent uncertainty of water inflows. This study presents a data-driven methodology for
representing hydropower plants physically and through equivalent energy models, accounting for inflow
uncertainties implicitly. Using historical data, we apply analytical techniques—including auxiliary
linear models, load-duration curves, and filtering methods in linear regressions—to configure key
hydropower parameters such as water inflows, reservoir boundaries, and hydropower plant production
limits. These methods can be applied across hydro systems of different scales. We have validated our
approach for the Spanish system for 2019 and 2025, demonstrating its efficacy.

Nomenclature

Sets (calligraphic)

 Set of pumping plants. 𝑝 ∈ 

 Set of reservoirs. 𝑟 ∈ 

𝑟 Set of tuples (

𝑟, 𝑟
) that relate the upstream reservoir 𝑟 and

reservoir 𝑟
𝑝 Set of tuples (𝑟, 𝑝) that relate the pumping plant 𝑝 and the reservoir

𝑟 where the water is pumped
𝑟 Set of tuples (𝑝, 𝑟) that relate the pumping plant 𝑝 and reservoir 𝑟

where the water is taken from

Parameters (uppercase)

𝑅𝑉𝑟 Volume level of reservoir 𝑟 at the end of the day. [ℎ𝑚3]
𝑅𝑉 𝐼𝑟 Volume level of reservoir 𝑟 at the start of the day. [ℎ𝑚3]
𝑂𝑈𝑇𝑟 Water outflows of reservoir 𝑟 throughout the day. [ℎ𝑚3]
𝑃𝑈 Basin pumping consumption. [𝑀𝑊ℎ]
𝐸𝐶𝑝 Production function of pumping plant 𝑝. [𝑘𝑊 ℎ∕𝑚3]

𝐸𝐹𝐹𝑝 Round-trip efficiency of pumping plant ℎ
𝑃𝑁 , 𝑃𝑁2 Penalty values.
𝑃𝑀𝑝, 𝑃𝑀𝑝 Lo. and Up. bound of each pumping 𝑝. [𝑀𝑊 ]

Variables (lowercase)
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𝑖𝑓𝑟 Natural water inflows in reservoir 𝑟 throughout the day. [ℎ𝑚3]

𝑎𝑖𝑓𝑟 Slack variable to avoid infeasibilities caused by violations in the
lower bound of reservoir 𝑟. [ℎ𝑚3]

𝑜𝑓𝑟, 𝑜𝑓𝑡𝑜(𝑟) Water outflows resulting from electricity production in (into a)
reservoir 𝑟 throughout the day. [ℎ𝑚3]

𝑝𝑚𝑝 Consumption of a pumping plant 𝑝. [𝑀𝑊 ]
𝑝𝑚𝑤𝑟 Pumped water from a reservoir 𝑟. [ℎ𝑚3]
𝑝𝑚𝑤𝑡𝑜(𝑟) Pumped water to a reservoir 𝑟. [ℎ𝑚3]
𝑠𝑝𝑟, 𝑠𝑝𝑡𝑜(𝑟) Spillage from (to) a reservoir 𝑟 throughout the day. [ℎ𝑚3]
𝑖𝑟𝑟 Irrigation from a reservoir 𝑟 throughout the day. [ℎ𝑚3]

1. Introduction
Hydropower technology is essential for enhancing power

system flexibility due to its rapid response and significant
energy storage capabilities. The growing integration of
renewable energy sources underscores the importance of
hydropower, particularly in addressing the inherent variability
of these resources Zhang, Li, Chen, Xu and Mahmud (2021).

Comprehensive modeling of hydropower is crucial for
short-, medium-, and long-term energy planning. This mod-
eling must encompass system physics, dynamics, uncertainty,
and other water uses. From a physics point of view, key
parameters typically included are minimum and maximum
power outputs, ramping capabilities, storage limits, cascaded
hydropower plant topologies, and functions that model the
conversion of water potential energy into electrical energy
[Niu and Insley (2013), Stoll, Andrade, Cohen, Brinkman
and Brancucci Martinez-Anido (2017)]. Regarding the sys-
tem’s dynamics, it is crucial to represent the variability of
renewable resources and daily operational cycles by selecting
an appropriate time step (hourly, daily, weekly) Hoffmann,
Priesmann, Nolting, Praktiknjo, Kotzur and Stolten (2021).
Additionally, uncertainty modeling, involving stochastic
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models and optimization techniques, is essential to address
the uncertainty of water inflows Yue, Pye, DeCarolis, Li,
Rogan and Gallachóir (2018). Finally, hydropower operations
are also influenced by non-electrical water uses such as water
supply, recreation, and industry, which must be considered
in the models Stoll et al. (2017).

Different conclusions regarding hydropower have been
drawn in the literature. Among the most significant findings
are the following: stochastic models are deemed the most
appropriate due to the inherent uncertainty of water inflows
Muhammad and Pflug (2014). Furthermore, researchers
have found that employing weekly or monthly time steps is
suitable for representing system dynamics Cerisola, Latorre
and Ramos (2012). These models necessitate the inclusion
of storage limits, production limits, upward and downward
ramps, and production functions for accurate representation
Stoll et al. (2017). Recent developments have underscored the
need to reduce the time step of models owing to the variability
of renewable resources. Hourly time steps have emerged as
the most suitable option for these applications Ringkjøb,
Haugan and Solbrekke (2018). The need to optimize and
simulate complete years has further necessitated various
simplifications, such as adopting equivalent hydropower
representations and deterministic models.

The concept of hydropower equivalents has been explored
in various studies. In [Arvanitidits and Rosing (1970) and
Arvanitidis and Rosing (1970)], the authors proposed a
composite model for multi-reservoir systems based on the
potential energy of water in each reservoir. This model
aggregates reservoirs, considering that the water within each
reservoir can generate energy through its hydropower plant
and any downstream hydropower plants that leverage the flow
of this water. However, it did not account for certain features
like ramps or pumping stations, leading to high flexibility
when integrating into optimization frameworks.

The analysis conducted in de Amezúa (2003) builds
upon the aggregation approach proposed in Arvanitidits and
Rosing (1970). This study aggregated hydropower plants
into programming units (PrU) and included pumping units in
calculating natural inflows. It is important to highlight that
this work employed a deterministic model, and additional
considerations were not incorporated to handle the water
inflow uncertainty.

In González, Villar, Díaz and Campos (2013), the au-
thors used linear models to represent Spanish hydropower,
aggregating plants into conventional storage and closed-
loop pumped storage types. However, this approach did not
account for temporal correlations or seasonality, potentially
leading to imprecise reserve estimations.

In the review de Queiroz (2016), the impact of equivalent
hydropower plants on the performance of stochastic models
is emphasized. However, the author highlights that this
approach may affect system operational decisions, leading
to undesirable errors stemming from approximations in the
problem formulation.

In Härtel and Korpås (2017), the authors developed more
accurate hydropower equivalents by considering different

topologies of cascaded hydropower plants and introducing
synthetic reservoirs to represent pumping plants. This work
presents a more precise equivalent representation of hy-
dropower systems. However, it did not incorporate additional
conditions to represent the uncertainty of water inflow.

In Löschenbrand and Korpås (2017), the authors pro-
posed a multi-objective approach using genetic algorithms
to generate aggregated equivalents, maximizing similarity
to the original system. It is important to note that this study
considers a single scenario; therefore, it lacks consideration
for reducing the flexibility of the equivalent hydropower
due to the water inflow uncertainty. In Blom, Söder and
Risberg (2020), the authors extended this work by including
multi-scenario models, resulting in more robust equivalents.
Continuing their research, the authors in Blom and Söder
(2022) compare different techniques for solving the bilevel
problem introduced in their previous work. This comparative
analysis aims to identify the most effective approach for
generating equivalent hydropower plants. In Blom and Söder
(2024), the authors apply the Karush-Kuhn-Tucker (KKT)
conditions to the bilevel problem and utilize McCormick
envelopes and a modified Benders method to solve it faster
than previous methods.

Finally, authors in Helseth and Mo (2022) employed
Stochastic Dual Dynamic Programming to represent a hy-
dropower equivalent.

The recent studies mentioned above have improved
the methodologies for generating aggregated hydropower
equivalents, but they often involve complex applications
and a strong reliance on underlying programming models.
Our approach diverges by prioritizing data dependency and
enhancing customizability while managing the flexibility of
the resulting equivalent systems. We apply statistical methods
to establish appropriate parameter ranges for hydropower
equivalents, allowing for more adaptable and data-driven
representations that simplify implementation and improve
optimization model robustness.

The main contributions of this paper are:
• Proposal of a data-driven framework for modeling hy-

dropower energy systems, considering factors such as natu-
ral inflows, production limits, storage, ramping capabilities,
and intra-basin interactions.

• Introduction of analytical methods, including auxiliary
linear programs, clustering techniques, and Fourier series
decomposition filtering, to derive hydropower parameters
considering diverse scenarios.

• Provision of a realistic database of the Spanish energy
system for medium-term studies, focusing on hydropower
modeling.

• Analysis of the Spanish system’s operation for 2025 to
illustrate the effectiveness of the proposed approach, high-
lighting the behavior and performance of the introduced
framework.
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2. Open Data in Spain
This section highlights the available web-based data in

Spain, emphasizing its potential for deriving the hydropower
plant parameters needed in optimization models.
Civil engineering data. MITECO

The Spanish Ministry of Ecological Transition and De-
mographic Challenge (MITECO) provides a comprehensive
database on reservoirs and dams in Spain, which helps obtain
basin and reservoir parameters.
• Reservoir and dam database [MITECO RV]: Contains

information on maximum and effective volumes, net-
head for power plants, and interconnections between
hydropower plants and reservoirs1. This database lists 374
reservoirs in mainland Spain, including 93 hydropower
reservoirs with capacities ranging from 5 to 3160 hm3.

• GIS map [MITECO MAP]: Geographical locations of
all rivers and reservoirs in Spain are publicly available
through layer files, essential for establishing topological
relationships within a basin2.

• CEDEX - Afliqe [CEDEX]: The Center for Studies and
Experimentation in Civil Engineering (CEDEX) provides
daily reports on reservoir volumes and outflows, enabling
the inference of total daily inflows. However, determining
natural inflows requires a more nuanced methodology,
explained in section 3.1.

• Hydro Bulletin [MITECO]: MITECO conducts topograph-
ical studies to define volume-height curves for reser-
voirs. Although this information is not publicly available,
MITECO does publish a weekly report for each hydro
basin that includes reserve levels in water and energy.

Power system data. e-SIOS
The System Operator Information System (e-SIOS) offers

detailed data on Physical Units (PhUs) and Programming
Units (PrUs), their historical power production, and rated
capacities, which are useful for obtaining hydropower plant
parameters.
• List of Physical Units (PhU) and Programming Units (PrU)

[ESIOS UF and ESIOS UP]: Includes information on
hydropower plants and their grouping into programming
units for market participation. Mainland Spain has 1,282
physical hydropower plants ranging from 0.1 to 239 MW,
grouped into 256 programming units ranging from 0.1
to 3,543 MW. Among these, 111 physical hydropower
units have capacities exceeding 50 MW, and there are 35
programming units with capacities over 50 MW.

• Pumping and production [ESIOS]: ESIOS provides hourly
values on power production and pumping consumption per
programming unit, which helps enhance the estimation of
natural inflows.

1Iberdrola (2006) provides comprehensive insights into Iberdrola’s
hydropower plants.

2It is important to note that we use Google Maps and Google Earth to
validate some data.

3. Proposed Methods for Hydropower
Parameter Extraction
This section explores the analytical methods used for pa-

rameter extraction applicable to both physical and equivalent
aggregated energy representations of hydropower plants. The
physical representation captures the detailed dynamics of the
hydropower system, including water flow, reservoir levels,
and turbine operations. In contrast, the equivalent aggregated
energy model simplifies these dynamics into energy terms,
facilitating integration with broader energy system models.
These methods play a key role in the methodology outlined
in Figure 1, which details the extraction of hydropower
parameters, their validation, and the subsequent application
in a real-world case study in Spain.

Data for Hydropower plants

Establishing the Upward and 

Downward Ramps

Establishing the Operational Minimum 

and Maximum Production 

Estimation of the Production 

Function 

MITECO

e-sios

Obtaining the Hydrological Topology 

of Each Basin

Data for Basins & Reservoirs

Computation of Natural Inflows

(water inflows, energy inflows)

Establishing the Operational Minimum 

and Maximum Reservoir Capacity 

Aggregation of Reservoirs into PrU 

(optional)

R1 R2

R3

Simulation in 

previous scenarios

Validation

Simulation of

future scenarios

Application

Medium-term 

planning model

Figure 1: Methodology for Hydropower Modeling in Medium-
Term Planning

The following methods are described in the following
subsections:
• Auxiliary Linear Optimization Model
• Fourier Series Filtering and Linear Regression Models
• Load-Duration curve based on K-means algorithm
3.1. Basins & Reservoirs

A basin is a geographical area where precipitation collects
and drains into a common outlet, such as a river, lake,
reservoir, or a combination of these. Within this context,
reservoirs play a critical role by storing water as the primary
energy source for hydropower generation. Therefore, it is
crucial to establish the basin’s topology, identify reservoir
aggregations (if required to simplify model complexity),
quantify the natural inflows to physical and equivalent
reservoirs (derived from these aggregations), and determine
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their operational minimum and maximum capacities. To
address these considerations, we present a set of methods
described below.

Obtaining the Hydrological Topology of Each Basin
The basin’s topology includes a network of reservoirs,

production units, and pumping units connected by rivers,
streams, weirs, and canals. Accurately modeling hydropower
production requires obtaining this topology. For this task, we
employ GIS maps developed by MITECO (Section 2).

Aggregation of Reservoirs into PrU
Various criteria can be employed for this aggregation,

as outlined in Härtel and Korpås (2017). However, using
pre-established market groupings is advantageous due to the
availability of additional data for constructing the equivalent
model.

In many instances, when an administration allocates
exploitation rights over reservoirs to various companies
within a basin, it may assign the exploitation rights for the
entire basin or a majority of it to a single company. This
consolidation enables more efficient administration of hydro
resources, owing to the significant coupling interactions
among the management of different reservoirs within the
same basin. This aggregation is commonly known as a
Programming Unit (PrU).

Aggregating hydropower plants into PrU results in a loss
of detailed information about the individual power generation
of each plant over time, making only the total aggregate
production available. Despite the inherent loss of information,
aggregating hydropower plants into PrU is the best way to
build an equivalent hydropower plant since it can capitalize
on the existing market records, such as power production and
electrical consumption.

Computation of Natural Inflows
The natural inflows to a reservoir refer to the water en-

tering the reservoir, excluding any water released from other
hydropower plants and spillages from upstream reservoirs.

The described procedure involves two main steps:
• Calculating Natural Water Inflows: Calculate the natural

water inflows to each reservoir (physical representation).
• Calculating Natural Energy Inflows: Convert these

natural water inflows into natural energy inflows for an
equivalent aggregated energy hydropower plant.
To estimate the natural water inflows from open data in

Spain, we employed an auxiliary linear model that considers
the topology of each PrU, the production function of every
hydropower plant, reserve levels, pumping production, and
other publicly available parameters discussed in previous
sections.

The mathematical model is constrained by a modified
equation of the water balance that includes information
regarding pumping consumptions and the topology of each
PrU. The linear model is explained below.

According to figure 2, the water balance for each reservoir
𝑟 is given by the equation 1. This equation captures the daily

dynamics of a hydroelectric reservoir’s reserves, accounting
for the balance between natural processes, energy production,
inter-reservoir coordination, and water usage demands.

 

Figure 2: Reservoir modeling

𝑅𝑉 𝑟 = 𝑅𝑉 𝐼𝑟 + 𝑖𝑓 𝑟 − 𝑜𝑓 𝑟 − 𝑝𝑚𝑤𝑟 − 𝑠𝑝𝑟
+ 𝑜𝑓 𝑡𝑜(𝑟) + 𝑝𝑚𝑤𝑡𝑜(𝑟) + 𝑠𝑝𝑡𝑜(𝑟) − 𝑖𝑟𝑟 + 𝑎𝑖𝑓 𝑟

(1)

If we consider 𝑂𝑈𝑇 𝑟 = 𝑜𝑓 𝑟 + 𝑝𝑚𝑤𝑟 and the water
outflows from each hydropower plant end up in the same
reservoir downstream, then:

𝑜𝑓 𝑡𝑜(𝑟) =
∑

𝑟∈𝑟

𝑜𝑓 𝑟 (2)

If we add and subtract ∑𝑟∈𝑟
𝑝𝑚𝑤𝑟 to equation 2, we

obtain

𝑜𝑓 𝑡𝑜(𝑟) =
∑

𝑟∈𝑟

(

𝑜𝑓 𝑟 + 𝑝𝑚𝑤𝑟

)

−
∑

𝑟∈𝑟

𝑝𝑚𝑤𝑟

=
∑

𝑟∈𝑟

𝑂𝑈𝑇 𝑟 −
∑

𝑟∈𝑟

𝑝𝑚𝑤𝑟

(3)

Incorporating the relation 3 into equation 1 results in equa-
tion 4b, which serves as a constraint within the optimization
model to calculate the natural water inflows of each reservoir.

Considering the aforementioned analysis, we formulate
the optimization model 4 to calculate the natural inflows of
each reservoir.

min
∑

𝑟

(

𝑖𝑟𝑟 + 𝑃𝑁.𝑠𝑝𝑟 + 𝑃𝑁2.𝑎𝑖𝑓 𝑟
)

(4a)
s.t.

𝑅𝑉 𝑟 = 𝑅𝑉 𝐼 𝑟 − 𝑂𝑈𝑇 𝑟 +
∑

𝑟∈𝑟

𝑂𝑈𝑇 𝑟 + 𝑖𝑓 𝑟 − 𝑠𝑝𝑟 − 𝑖𝑟𝑟+

+
∑

𝑟∈𝑟

𝑠𝑝𝑟 −
∑

𝑟∈𝑟

𝑝𝑚𝑤𝑟 + 𝑝𝑚𝑤𝑡𝑜(𝑟) + 𝑎𝑖𝑓 𝑟, ∀ (𝑟)
(4b)

𝑃𝑈 = 24
∑

𝑝
𝑝𝑚𝑝 (4c)

𝑝𝑚𝑤𝑟 = 24
∑

𝑝∈𝑝

𝐸𝐹𝐹𝑝𝑝𝑚𝑝∕𝐸𝐶𝑝, ∀ (𝑟) (4d)

𝑝𝑚𝑤𝑡𝑜(𝑟) = 24
∑

𝑝∈𝑟

𝐸𝐹𝐹𝑝𝑝𝑚𝑝∕𝐸𝐶𝑝, ∀ (𝑟) (4e)
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𝑃𝑀𝑝 ≤ 𝑝𝑚𝑝 ≤ 𝑃𝑀𝑝, ∀ (𝑝) (4f)
The model aims to find a feasible solution by prioritizing

slack variables in the objective function. It first utilizes
irrigation operations, then spillages, and finally, artificial
water inflows to prevent infeasibilities. This sequence reflects
the logical order of these variables according to real-world
operational practices. The model is designed to operate
on a daily resolution consistent with the publicly available
parameters.

The conversion from natural water inflows to natural
energy inflows follows the concept described in Arvanitidits
and Rosing (1970). We obtain the natural energy inflows by
applying an aggregated conversion factor to each reservoir’s
natural water inflows and summing them (Figure 3).

P������� �	
�	�	�����
�

(W��	�)

E������	�� 	�	��� �	
�	�	�����
�

(E�	���)

Figure 3: Conversion from Physical Representation to Equiva-
lent Energy hydropower Plant

Establishing the Operational Minimum and Maxi-
mum Reservoir Capacity

Hydropower reservoirs require establishing storage limits
that vary depending on the season of the year and the
corresponding water inflow levels. Operational requirements
for reservoirs differ significantly between winter and sum-
mer, with winter focusing on water storage for electricity
production and summer prioritizing other uses.

A common approach to defining these limits involves
utilizing historical minimum and maximum values for each
month. However, this method may result in overly broad
ranges, leading to an excessively flexible model that does not
accurately reflect real system constraints.

We propose a methodology that involves the following
steps:
1. Standardize and normalize the data (reservoir and water

inflows) using equations 5a and 5b correspondingly.

𝐘(𝑡) =
[

𝑦1(𝑡) − 𝜇1

𝜎1
,… ,

𝑦𝑖(𝑡) − 𝜇𝑖

𝜎𝑖

]

(5a)

𝑇
(

𝑦𝑖(𝑡)
)

=
𝑦𝜆𝑖 (𝑡) − 1

𝜆
(5b)

where 𝑦𝑖(𝑡) represents each time series and 𝜆 is the
parametric value of the Box-Cox transformation.

2. The next step involves filtering the explanatory variables,
specifically the water inflows. This step is crucial for
identifying seasonal trends and correlations with the
variables to be predicted (Hassani, Mahmoudvand and
Yarmohammadi (2010), Meng, Wang, Guo and Ding
(2023)). In this study, we employ a low-pass filter applied
to the water inflows, guided by the observation that the
reservoir level exhibits a smooth behavior. Generally,
system operators do not make daily adjustments to the
operation of large reservoirs; instead, the operation of
these reservoirs relies on the overall behavior of water
inflows within a given week or month. Mathematically,
this implies that the reservoir level does not contain high-
frequency components.
Various methods are employed to execute this filtering
process, including moving averages at different frames
Aradhye, Rao and Mastan Mohammed (2019), Fourier
analysis Oppenheim, Willsky and Nawab (1997), and
wavelet transform Joo and Kim (2015). In this study,
we specifically focus on the first two methods. These
techniques are numerically compared using 𝑅2, 𝑅𝑀𝑆𝐸,
and 𝑀𝐴𝐸 scores based on the linear regression model.
The details of these filtering methods are outlined below:
Moving Averages at Different Frames: The moving aver-
ages method involves calculating averages to smoothen the
explanatory variables. We employed weekly, two-week,
and monthly frames for the moving averages.
Filtering Based on Fourier Analysis: In this method,
we analyze the frequency spectrum of the variable to be
predicted (reserve level). The resulting spectrum is then
compared with the explanatory variables (water inflows).
This step is crucial in determining whether the predictor
variables need to be filtered, thereby averting potential
issues associated with fitting the parametric model in the
presence of high-frequency components.

3. A linear regression model is utilized in the modeling phase,
but it is noteworthy that other alternative models, includ-
ing neural networks, can be explored for this purpose. In
this study, we specifically use a linear regression model
with Ridge regularization. The weight for controlling the
regularization strength is a hyperparameter calculated
through a cross-validation method over a grid of potential
weights. The 𝑅2 determination score is then employed
to assess the predictability of each weight, aiding in the
selection of the best one.

4. Calculate the standard deviation of the error between the
predicted value and the actual variable. This standard
deviation is used to define the range of reservoir levels. In
this study, we employ 2 standard deviations, as indicated
in Equation 6.

𝑟𝑣𝑟 ∈
[

𝑟𝑣𝑟 − 2𝜎𝑟, 𝑟𝑣𝑟 + 2𝜎𝑟
]

=
[

𝐿𝐵𝑟, 𝑈𝐵𝑟
]

, ∀ (𝑟) (6)
In this context, 𝑟𝑣𝑟 represents the reservoir level obtained
from the optimization model, 𝑟𝑣𝑟 denotes the predicted
value from the parametric model, and 𝜎𝑟 indicates the
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standard deviation of the errors between historical and
expected values.
In this analysis, data is considered at a weekly resolution,

calculated as the average of values within each week. This
method applies to both physical and equivalent energy
representations. For the physical representation, the analysis
is performed on each reservoir using MITECO data. For
the equivalent energy representation, MITECO data is first
converted into equivalent energy, as outlined in Figure 3, and
then the procedure is applied.
3.2. Hydropower Plants

This section outlines the process for determining the
parameters of hydropower plants in both the physical and
energy representations. This study considers the production
function, the minimum and maximum production levels, and
the upward and downward ramps for hydropower plants.

Estimation of the Production Function
The hydropower production function describes the re-

lationship between energy production and both the water
release and net head in the reservoir (Cerisola et al., 2012).
While obtaining the parameters of this function publicly can
be challenging, data related to reservoir levels, both in terms
of water and energy units, are commonly available. These
data serve as an approximation of production based on the
release and net head. The production function is relevant for
estimating water inflows and converting physical reservoirs
into equivalent energy hydropower plants.

Establishing the Operational Minimum and Maxi-
mum Hydropower Plants Production

A hydropower plant’s minimum and maximum power
production are well defined by its technical characteristics.
However, for mid-term deterministic planning models, it
is important to adjust these bounds to address the inherent
limitations of such models in capturing uncertainties. These
adjustments ensure that the planning models more accurately
reflect the real-world power production variability due to
seasonal water availability and operational constraints.

Determining the minimum and maximum power pro-
duction for an equivalent hydropower plant requires a more
nuanced approach than merely summing the technical char-
acteristics of individual plants. Such a simplistic method
would result in an equivalent plant with excessive flexibility,
as it unrealistically allows for the simultaneous maximum
production of all the plants.

In real-world operations, the power production of hy-
dropower plants is closely tied to seasonal variations, with
higher production during wet seasons and lower output during
dry periods. Various methods can be applied to account for
these fluctuations effectively:
• Minimum and Maximum values: This approach pe-

riodically determines minimum and maximum power
production, such as daily or weekly.

• Quantiles: Defining quantiles, such as the 1st and 99th
percentiles, weekly or by another period, helps to represent

the minimum and maximum power production range. This
approach aims to exclude outlier situations from the past
that may not be representative of future expectations.

• Duration-Curve Method: This technique involves con-
structing duration curves to analyze the distribution of
power production over time. Examining this duration
curve makes it possible to determine the minimum and
maximum power production levels closely reflecting actual
operational conditions. In this work, the duration curve is
obtained through clustering methods. Figure 4 describes
the procedure to obtain the production bounds.

Figure 4: Method to obtain the lower and upper production
bounds

In this study, we establish the process as stable when the
lower and upper bounds do not deviate by more than 5% from
the moving average of the last three iterations, as depicted in
Equation 7.

stop =
{

𝑈𝐵𝑛 ∈
[

0.95 ̂𝑈𝐵𝑛, 1.05 ̂𝑈𝐵𝑛
] and

𝐿𝐵𝑛 ∈
[

0.95𝐿𝐵𝑛, 1.05𝐿𝐵𝑛
]

̂𝑈𝐵𝑛 =
𝑈𝐵𝑛−1 + 𝑈𝐵𝑛−2 + 𝑈𝐵𝑛−3

3

𝐿𝐵𝑛 =
𝐿𝐵𝑛−1 + 𝐿𝐵𝑛−2 + 𝐿𝐵𝑛−3

3

(7)

where, 𝑈𝐵𝑛 and 𝐿𝐵𝑛 represent the upper bound and
lower bound with 𝑛 clusters.
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Establishing the Upward and Downward Ramps
Similar to the techniques used to determine the minimum

and maximum power expected from a PrU at a specific period,
the maximum ramps were obtained through a statistical
analysis of historical data.

For each PrU, data regarding the increase or decrease in
power supplied from one hour to the next has been calculated
across all available data. These data points have been grouped
into a predetermined number of clusters per PrU, from the
largest increase to the largest decrease. In this computation,
we employ the same clustering method for hourly production.
The clusters representing the largest increase and the largest
decrease are dropped from the analysis. This filtering step
excludes exceptional operating conditions and maintains only
the operational upward and downward ramps.

4. Case study and results
This section presents the application of the proposed

methods through a comprehensive case study in Spain.
Section 4.1 focuses on the extraction of the hydropower
parameters mentioned in section 3. Section 4.2 addresses
the validation process, where the parameters are tested by
configuring a hydrothermal optimization model and compar-
ing its results against historical data to assess accuracy and
reliability. Finally, Section 4.3 demonstrates the application
of the validated parameters within the context of medium-
term planning by executing a case study for 2025, showing
the model’s practical utility and performance. The Spanish
energy system was chosen as the case study for evaluating
the performance of the hydropower modeling proposed in
this paper.
4.1. Hydropower Parameter Extraction
4.1.1. Basins & Reservoirs

Topology of Basins
We have obtained the topological representation of the

Duero, Tajo, and Sil basins, which contribute to approxi-
mately 56% of the reservoir-hydro production within the
Spanish energy system (Figure 5).

Natural Inflows
We computed the natural inflows for the Duero, Tajo,

and Sil basins, represented by the PrUs DUER, TAJO, and
SIL, respectively. Following the methodology outlined in
Section 3.1, we generated representations for both natural
water inflows and natural energy inflows.

Figure 6 and Figure 7 show the natural water and energy
inflows for each basin.

Operational Minimum and Maximum Reservoir Ca-
pacity

Section 3.1 described the methodology for deriving the
curve-rule operation. To improve the predictability of the
linear model, we performed a monthly analysis after applying
filtering methods. The correlation results are presented in
Table 1.
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Figure 5: Topology of Duero, Tajo, and Sil basins

Reserve
Water inflows

DUER TAJO SIL

Annual 0.28 0.32 0.35
Annual + Filtering 0.39 0.37 0.37

Jan + Filtering 0.77 0.31 0.61
Feb + Filtering 0.74 0.36 0.68
Mar + Filtering 0.64 0.66 0.72
Apr + Filtering 0.66 0.82 0.77
May + Filtering 0.63 0.84 0.71
Jun + Filtering 0.65 0.87 0.63
Jul + Filtering 0.68 0.89 0.49
Aug + Filtering 0.76 0.88 0.37
Sep + Filtering 0.70 0.76 0.34
Oct + Filtering 0.51 0.56 0.27
Nov + Filtering 0.42 0.16 0.30
Dec + Filtering 0.50 0.05 0.39

Table 1
Correlation coefficient between reserve and water inflows

Based on the correlation analysis results in Table 1,
we developed linear regression models for each month,
correlating reserve levels with water inflows. The analysis
includes a comparison of various filtering methods, including
moving average smoothing and Fourier analysis. Model
performance was assessed using𝑅2, RMSE, and MAE scores,
as shown in Table 2 for the PrU DUER under different
filtering methods. These findings led us to apply Series-
Fourier filtering to the predictor variables (water inflows and
their lags) to improve the linear model’s accuracy between
reserve levels and water inflows.

Figure 8 shows the cross-correlation results for the PrU
DUER between the reserve and the water inflows. It is
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Figure 6: Water Inflows of Production Units [m3∕s]

Table 2
Comparison of Filtering Methods for Deriving the Linear
Regression Model Between Reserve Level and Water Inflows
for PrU DUER

Method 𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸
Moving average. Weekly 0.65 612 520

Moving average. Two-weeks 0.64 616 521
Monthly 0.63 629 526

Fourier series 0.76 511 420

important to note that the predictor variables in this analysis
are the monthly average water inflows. Although the water
inflows are measured at a daily resolution, we aim to predict
each reserve value based on previous monthly trends of the
water inflows.

Following the procedure described in Section 3.1, the
limits for PrU DUER, TAJO, and SIL are shown in Figure 9.
This interval predicts the reserve levels with 95% confidence
across different water inflow scenarios (dry, average, and
wet).
4.1.2. Hydropower plants

Operational Minimum and Maximum Hydropower
Plants Production
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Figure 7: Energy inflows of Equivalent Hydropower Units [GWh]
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Figure 8: Cross correlation between PrU DUER reserve and the
monthly trends of the water inflows at different lags (1m = 4
weeks)

To illustrate the effectiveness of the analytical methods
described in Section 3.2, the PrU DUER, one of Spain’s
most significant, was selected. This basin includes fourteen
hydropower plants with a combined maximum design power
capacity of 3,460 MW. Theoretically, these turbines can be
committed without producing energy, resulting in a minimum
power of 0 MW.

The study analyzed hourly power production data from
2011 to 2019. Table 3 presents annual statistical measures,
including the technical minimum and maximum power
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Figure 9: Operational Minimum and Maximum Reservoir
Capacity

Table 3
Annual statistical measures. PrU DUER
* 13 clusters

Method 𝑃𝑚𝑖𝑛 [𝑀𝑊 ] 𝑃𝑚𝑎𝑥 [𝑀𝑊 ]
Technical characteristics 0 3460
Historic min and max 0 3201

1st and 99th percentile 31 2643
Elbow rule* 97 2813

Load-curve duration 63 2867

production, as well as the minimum and maximum values
derived from the 1st and 99th percentiles and load-curve
duration analysis. For comparison, two duration curves were
constructed using two methods to select the number of
clusters: The Elbow rule and the method proposed in this
study.

According to the Elbow rule, the optimal number of
clusters is thirteen. By using our proposed stopping criterion,
the clustering process requires twenty-one clusters. Table
3 compares the Elbow rule and our method results. While
both yield similar values for the variable limits, our method
focuses on stabilizing the bounds, which are neither as wide
as the technical characteristics or the historical minimum and
maximum of the time series nor as narrow as the 1st and 99th
percentiles.

In this work, we implemented the proposed method
weekly throughout the time series. Figure 11 shows the results
for the PrU DUER.

Figure 12 illustrates the stabilization of the power pro-
duction limits for the PrU DUER, following the procedure
outlined in section 3.2. In this instance, the number of clusters
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Figure 10: Elbow rule
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Figure 11: Weekly minimum and maximum power for PrU
DUER. Dynamic Load-curve duration

in our methodology is interpreted as the number of bins in
the load-curve duration.
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Figure 12: Load-Curve Duration Analysis: Relationship between
bounds stabilization and the number of clusters used. Whole
time series

Upward and Downward Ramps
Following a similar procedure to calculate the mini-

mum and maximum power production, we determined the
operational upward and downward ramps for equivalent
hydropower plants. The resulting values are presented in
table 4.
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Table 4
Upward and Downward Ramps

Hydropower
plant

Downward
[

𝑀𝑊 ∕ℎ
]

Upward
[

𝑀𝑊 ∕ℎ
]

DUER 745 790
SIL 300 305
TAJO 565 570

4.2. Validation: Year 2019
The parameters required for the optimization model are

configured using the results from the analytical methods
outlined in section 3. To assess the quality of the modeling,
we configured the openTEPES model Ramos, Alvarez and
Lumbreras (2022), a standard unit commitment model, to
evaluate the operation for the year 2019. Subsequently, the
results of the hydropower production and reserve levels are
compared with the actual values for that year.

The case study highlights the following characteristics:
• Detailed modeling of three basins: Duero and Sil as

equivalent energy plants, and Tajo represented by its 9
cascaded water reservoirs.

• 35 PrU units with capacities exceeding 50 MW.
• 51 generation plants, including combined cycle gas tur-

bines (CCGT) and coal-fired units.
• 7 nuclear plants.
• Renewable generation, including thermal solar, photo-

voltaic solar, and wind production.
• Other generation sources, including biogas, biomass,

geothermal, and cogeneration.
• Consideration of 8736 hours in the optimization model.

It is essential to note some approximations made in
this study, which are common when working with open
data in an electrical system. First, the variable costs of
thermal plants were considered every month rather than a
daily one. Second, solar and wind production plants were
aggregated into one representative programming unit for
each technology. Maintenance scheduling and forced outages
were also modeled using an Equivalent Forced Outage Rate
(EFOR). Finally, a deterministic optimization model was
employed.

Figure 13 compares the performance of various gener-
ation technologies based on the simulation results of the
Spanish electricity system for 2019 and the actual observed
values, Red Eléctrica de España (2019). The maximum
discrepancies, approximately 0.3%, are primarily associated
with hydropower and CCGT+Coal production.

Figure 14 depicts the water management in two significant
reservoirs within the Tajo basin, offering a closer look at how
water levels are managed.

Figure 15 showcases the energy management in the Duero
and Sil basins, the other two critical basins in the Spanish
system, providing additional insights into energy production
and utilization dynamics.

Figure 14 and Figure 15 demonstrate a strong correlation
in the trends of reservoir levels between the results of
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Figure 13: Comparison of technology production between the
simulation results and the actual 2019 operation
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Figure 14: Reserve level. Real reservoirs. 2019 operation

the model (openTEPES) and the observed behavior. Table
5 shows the 𝑅2 measure for this case study, labeled as
"Benchmark."

A deviation in the PrU SIL is evident around week thirty-
seven. This discrepancy arises from the specific conditions
of the water inflows in 2019. During this week, water inflows
increased. In actual operation, the decision was made to store
water due to the uncertainty of future inflows. However, the
model used in this study is deterministic, allowing for better
water use since it "knows" the future inflows. It is important
to note that the imposed limits on reservoir levels restrict the
model’s flexibility in decision-making, resulting in behaviors
more similar to real operations.
4.2.1. What-If Analysis

We conducted a sensitivity analysis to examine the impact
of replacing the parameters calculated in Section 4.1 (pro-
posed methods) with design values representing the technical
capabilities of hydropower plants and reservoirs. These
design values are less restrictive within the optimization
model than the computed parameters, which are adjusted to
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Figure 15: Reserve level. Equivalent reservoirs. 2019 operation

reflect practical operational constraints. This analysis focused
on varying reservoir limits, production limits, and water
inflows to evaluate their influence on the results. The 2019
case study was performed with three different variations:
• Sensitivity 1, S1: In this case, the design values for hy-

dropower plant production limits are applied consistently
throughout the year rather than using the operational mini-
mum and maximum power production values calculated
in Section 4.1.

• Sensitivity 2, S2: This case builds upon the previous
sensitivity (S1). Additionally, reservoir design values are
applied throughout the year, replacing the operational
minimum and maximum reservoir limits calculated in
Section 4.1.

• Sensitivity 3, S3: This case combines the design values
for hydropower plant production and reservoir limits from
the previous cases. Furthermore, it incorporates historical
power production data as inflows, replacing the natural
inflows calculated in Section 4.1.
S1. Design Values for Hydropower Plants Replacing

Operational Limits
Figure 16 shows a higher hydropower production than the

scenario with weekly production constraints. This increase
in hydropower output leads to a reduction in CCGT+Coal
production to meet electrical demand. Although the overall
annual difference between these scenarios may appear min-
imal, Figures 17 and 18 highlight significant variations in
reservoir operations. Greater operational flexibility for hy-
dropower results in different decision-making across different
year seasons.

S2. S1 + Design Values for Reservoir Limits Replacing
Operational Limits

Figure 19 shows that the overall annual production of
hydropower and CCGT+Coal technologies remains the same

Biogas +

Biomass +

Geoth

Thermal

solar

FR -> ES +

PT -> ES

Photovolt

aic solar
Hydro

Cogenerat

ion
Wind Nuclear

CCGT +

Coal

Model 1.4 2.1 2.5 3.5 11.3 11.8 21.3 22.33 23.7

Actual opera�on 1.4 2.1 2.73 3.5 10.5 11.8 21.14 22.23 24.6

0

5

10

15

20

25

30

R
a

�

o
, 

P
ro

d
u

c�

o
n

 /
 D

e
m

a
n

d
 [

%
]

Figure 16: Comparison of Technology Production: Model
Results vs. Actual Operation in 2019, Considering Design Values
for Hydropower Plants Instead of Operational Limits
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Figure 17: Comparison of Reserve Levels in Real Reservoirs:
Model Results vs. Actual Operation in 2019, Considering Design
Values for Hydropower Plants Instead of Operational Limits

compared to the previous sensitivity (S1). However, Figures
20 and 21 reveal that reservoir operations differ significantly
from actual operations. For instance, the PrU SIL operates
flexibly, reducing reserve levels to zero. Such operations are
uncommon in real systems due to the inherent uncertainties
in water inflows and other operating conditions.

In this sensitivity, the design reservoir limits replaced the
operational limits and were applied consistently throughout
the year. The grey zones in Figures 20 and 21 are only
indicative references. Employing design values provides the
model with greater flexibility in decision-making, resulting
in a more cost-efficient solution; however, it also leads to
more significant deviations from actual operations. This
discrepancy arises primarily because the deterministic model
assumes perfect knowledge of future water inflows, a condi-
tion that does not hold in real-world systems operation. This
fact highlights the importance of configuring operational
limits for reservoirs to balance the model’s decision-making
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Figure 18: Comparison of Reserve Levels in Equivalent Reser-
voirs: Model Results vs. Actual Operation in 2019, Considering
Design Values for Hydropower Plants Instead of Operational
Limits

flexibility, ensuring it does not overly exploit perfect foresight
and produce unrealistic operations.
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Figure 19: Comparison of Technology Production: Model
Results vs. Actual Operation in 2019, Considering Design Values
for Hydropower Plants and Reservoirs Instead of Operational
Limits

S3. S2 + Production as Inflows Replacing Natural
Water Inflows

Figure 22 depicts that the overall annual energy pro-
duction exhibits the same behavior as in Figure 13 (Case
"Benchmark"). However, two important points must be kept
in mind:
• The operation of the reservoirs differs from the actual

operations in 2019. Although the real production for 2019
was used as inflows to the PrU, the model does not replicate
the operations for that year. Instead, the model re-optimizes
the operations for 2019. This fact occurs because the model
is deterministic and optimizes the system with “inflows"
that are not natural inflows. Figures 23 and 24 illustrate
these differences.
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Figure 20: Comparison of Reserve Levels in Real Reservoirs:
Model Results vs. Actual Operation in 2019, Considering
Design Values for Hydropower Plants and Reservoirs Instead of
Operational Limits
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Figure 21: Comparison of Reserve Levels in Equivalent Reser-
voirs: Model Results vs. Actual Operation in 2019, Considering
Design Values for Hydropower Plants and Reservoirs Instead of
Operational Limits

• Using these productions as inflows for future scenarios is
an incorrect assumption. While optimal productions are
obtained under specific conditions of a climate year, it is
important to remember that these conditions will not be the
same in the future (e.g., increased renewable generation
compared to past conditions). Considering productions as
inflows results in the loss of natural inflow management
and, therefore, yields incorrect results.
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Figure 22: Comparison of Technology Production: Model
Results vs. Actual Operation in 2019, Considering Design Values
for Hydropower Plants and Reservoirs Instead of Operational
Limits, and Actual Production as Inflows
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Figure 23: Comparison of Reserve Levels in Real Reservoirs:
Model Results vs. Actual Operation in 2019, Considering
Design Values for Hydropower Plants and Reservoirs Instead of
Operational Limits, and Actual Production as Inflows

Table 5 summarizes the different sensitivity results.
This table presents the 𝑅2 measure, comparing the results
regarding technology production over the year and the reserve
levels obtained through the model with the actual operation
data for 2019. The column labeled “Benchmark" refers
to the case study using the parameters calculated through
the methods proposed in this paper. The columns labeled
“S1," “S2," and “S3" correspond to the previously mentioned
sensitivity analyses.

The results presented in Table 5 highlight the effective-
ness of the methods proposed in this study, particularly
in the “Benchmark" case, where the metrics consistently
approach 1, indicating better alignment with real-world
operations. In contrast, the sensitivity analyses (S1, S2, S3),
which replace the operational parameters derived using the
proposed methods with design values, reveal notably lower
performance metrics. In each sensitivity case, the operation
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Figure 24: Comparison of Reserve Levels in Equivalent Reser-
voirs: Model Results vs. Actual Operation in 2019, Considering
Design Values for Hydropower Plants and Reservoirs Instead of
Operational Limits, and Actual Production as Inflows

Table 5
Comparison of different parameter combinations for hydropower
plants: 𝑅2 measure between model results and actual operation
data for 2019

Reservoir Benchmark S1 S2 S3
José María Oriol 0.98 0.71 0.16 0.36

Valdecañas 0.76 0.64 0.52 0.55
DUER 0.91 0.87 0.77 0.48
SIL 0.59 0.30 0.15 0.46

suggested by the optimization model diverges from actual
operations due to the increased flexibility in the decision-
making process. Specifically, the use of design values for
hydropower plant production and reservoir limits, or the
use of actual production as water/energy inflows, introduces
a level of flexibility that is more theoretical than practical,
resulting in model outputs less representative of real-world
conditions.
4.3. Application: Year 2025

In this section, we have simulated the Spanish energy
system for the year 2025. In addition to the data referenced
above, we have compiled other essential information required
for the setup of the case study:
• Demand: The National Resource Adequacy Assessment

(NRAA) report REE, which extends the European Re-
source Adequacy Assessment (ERAA), projects a peak
demand of 46.45 GW and an annual energy consumption
of 258.68 TWh for 2025. In this case study, hourly load
distribution factors from 2023 are scaled to match the 2025
peak demand, as illustrated in Figure 25.

• Wind and solar production: The "PEMMDB Generation"
file, referenced in ENTSOE, provides projected installed
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Figure 25: Spain demand expected for 2025

capacities for different generation technologies. For 2025,
it estimates 34,817 MW for wind and 33,698 MW for
photovoltaic solar. The hourly load factors align with the
simulated climate year, and in this study, we used 2019’s
climate conditions to model 2025.
For this analysis, we have incorporated the trends in

production technologies and the behavior of the reserve levels
of the primary basins in the Spanish system. We compared
these results with the 2019 operation in relative values to the
demand.

Figure 26 depicts shifts in energy production trends. Solar
and wind energy generation increase, while CCGT+Coal
production drops to meet demand. On the other hand, there
is a significant rise in hydropower, mainly due to increased
pumping operations. Specifically, hydropower production
through pumping rises from 1642 GWh in 2019 to 8161
GWh in 2025. Excluding pumping, hydropower generation
shows a minor change from 26092 GWh in 2019 to 26263
GWh in 2025.

The figure also compares production technologies with
2023 data (Red Eléctrica de España (2023)), offering a
more recent perspective. However, it’s worth noting that
hydrological conditions in Spain differed between 2023 and
2019, warranting caution in interpreting the overall values.
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Figure 26: Comparison of technology production between the
expected operation for 2025 and the real operation for 2019
and 2023

When examining the trends in reservoir levels, we note a
similarity in reservoir operations between 2019 and 2025. In
the main reservoirs, given the comparable climate conditions
to those of 2019, there are no observed spillage conditions

or requirements for water inflows. A notable increase in
pumping operations is observed, throwing from 1642 GWh
in 2019 to 8161 GWh in 2025. The integration of renewable
resources mainly drives this fact. Figure 27 illustrates the
operations of José María Oriol y Valdecañas reservoirs for
both 2019 and 2025, while Figure 28 displays the behavior
of the equivalent PrU DUER and Sil for the same years.
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Figure 27: Reserve level. Real reservoirs. 2025 vs. 2019
operation
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Figure 28: Reserve level. Equivalent reservoirs. 2025 vs. 2019
operation
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5. Discussion
5.1. Operational Minimum and Maximum Power

Production
Analyzing minimum and maximum power production

is crucial for configuring planning models and even more
for studying the increasing integration of renewable energy.
Summing the individual hydropower plants’ minimum and
maximum production capacities may result in overly flexible
equivalent plants, not reflecting real system constraints (Table
3).

Water inflows, strongly correlated with power production,
serve as excellent explanatory variables. Modeling minimum
and maximum power production based on water inflows
provides a robust framework for parameter configuration.
5.2. Operational Minimum and Maximum

Reservoir Capacity
Linear regression models are beneficial for determining

the dynamic limits of reservoirs due to their simplicity
in analyzing the relationship between reservoir parameters
and water inflows. However, these models presume a linear
relationship, which may not always be accurate, especially
for reservoirs with complex hydrological characteristics. In
such cases, more advanced models may be necessary.

To enhance the performance of linear regression models,
monthly analysis and filtering methods were applied (as
discussed in Sections 3.1 and 4.1.1).

The deviation between actual and forecasted reservoir
levels provides valuable information for setting lower and
upper bounds. These bounds influence water release and stor-
age policies, ensuring reservoir sustainability and mitigating
risks. For instance, if the optimization planning model utilizes
the water contained in the equivalent hydro reservoir, the
lower bound limits this usage. Conversely, if the model makes
decisions regarding storing water, the upper level controls
how much water can be stored to meet ecological constraints
or strategic behaviors concerning the equivalent reservoir.
This method helps implicitly model the uncertainty in the
model.

6. Conclusions
This paper introduces analytical techniques for con-

figuring parameters within hydropower optimization mod-
els. These techniques include methods based on duration
curves and clustering algorithms. Additionally, auxiliary
optimization models are utilized to determine water inflows to
reservoirs. Moreover, filtering methods based on the Fourier
series are applied to linear regression models to establish
the limits of equivalent reservoirs (PrU). The simplicity
and scalability of these methods make them accessible for
practical application.

The benchmark conducted for the 2019 operation in Spain
revealed that configuring hydropower parameters through the
proposed methods results in a notable alignment between
simulated outcomes and the actual operation of the system.
This correspondence captures not only the shape of the

data but also the specific values of variables such as energy
production level and energy storage.

Applying these techniques to a case study in Spain in
2025 yielded promising results. The configured parameters
provided flexibility to the optimization model, allowing it
to make decisions within reasonable ranges for operation.
This demonstrates the potential effectiveness of the approach
in addressing the complexities of hydro subsystems in
optimization models.
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